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ABSTRACT: 

An automatic tie-point (TP) detection algorithm for multi-image triangulation and registration is described. The algorithm uses a hierarchi- 
cal approach that leads from the initial extraction of local image patches to the final TP detection on multiple imagery. The distribution of 
the TP detection is automatically adjusted to meet the needs of the triangulation or registration. Candidate point features are extracted 
based on the information of local image space only. A relational-based matching scheme using consistent labelling is designed for match- 
ing conjugate point features over multiple imagery. The final TPs are refined using the traditional area-based matching. 

The algorithm was applied successfully to the in-flight georectification of global imagery from the nine pushbroom cameras of the Multi- 
angle Imaging SpectroRadiometor (MISR) instrument. TP match is accurate at 0.2 pixels and is closely successful on all cameras regard- 
less a diverse range of geometric and radiometric distortions. The software was initially tested with simulated MISR data resampled from 
LandSat imagery and later applied to the production operation of the MISR in-flight georectification. The software was also applied to air- 
bom MISR imagery. The results indicated the system could be adaptive to and effective on TP matching of space-born as well small scale 
air-bom imagery. 

1. INTRODUCTION 

The automation of the traditional photogrammetric process that 
works with blocks of aerial imagery from metric frame cameras 
has been well researched pang and Heipke. 19961 and some com- 
mercialized walker, 1%]. In contrast with traditional processes, 
precise image registration of modem sensors with unique geomet- 
ric and radiometric characters usually can not be performed on a 
standard softcopy station. Triangulation of special sensors is usu- 
ally modeled according to sensors' specific geometry which con- 
sequently imposes unique requirements on the control point 
selection. With the ever increasing number of remote sensing sat- 
ellites and air-bom observation systems, automatic image triangu- 
lation and registration are becoming fundamental to remote 
sensing and photogrammetry. Automatic TP detection is an essen- 
tial step to the success of image registration, especially large imag- 
ery. 

MISR is one of the instruments aboard the Earth Observing Sys- 
tem (EOS) Terra satellite [Diner, et.al. 19981. Its purpose is to 
study the ecology and climate of the earth through the acquisition 
of systematic, global multi-angle imagery in reflecting sunlight. 
The instrument consists of nine pushbroom cameras pointing at 
discrete view angles (one nadir, four forward and four aftward, at 
angles of 0", f26.1". f45.6", f60.0°, f70.5" with respect to the 
surface, designated as An for nadir, Af, Bf, Cf, Df for forward set 
and Aa, Ba, Ca, Da for aftward set of cameras). Each camera has 
four spectral bands centered at 443. 555. 670, and 865 nm. Each 
channel consists of 1504 photo active pixels. Terra flies on a 
705km sun-synchronous orbit, completes 233 unique paths every 

16 days. During the level one standard processing of raw data, all 
36 channels of imagery are required to be radiometrically cali- 
brated, and georegistered to the pixel level (275m) with 95% confi- 
dence. The georegistered multi-angle and multi-band imagery are 
resampled onto a Space-Oblique Mercator (SOM) map projection 
and used in the level two geophysical parameter retrievals. 

The standard georegistration processing routinely matches MISR 
imagery with a set of reference orbiting imagery (ROI) to correct 
for errors in the navigation data. ROI are non-cloudy MISR imag- 
ery resampled onto nominal Terra orbits. For continuing process- 
ing, ROI are created for all 233 orbits and nine cameras during the 
in-flight geometric calibration through an automatic triangulation 
and registration process. The details are described in [Jovanovic et. 
al., 19981. In brief, a simultaneous bundle adjustment (SBA) with 
a spline model is used to triangulate the pushbroom cameras and 
correct for errors in navigation pointing. SBA adaptively sets knots 
along the orbit based on the navigation error type and the TP dis- 
tribution. SBA also imposes requirements on the TP detection. 
First, TPs need to be consistently well distributed regardless sur- 
face type when applied globally. Second, the algorithm shall be 
well behaved with respect to geometric and radiometric distortions 
caused by diverse camera view directions. And last, the automatic 
detection needs to be reliable to ensure the triangulation accuracy. 

This paper presents the TP detection algorithm used for MISR 
image triangulation and registration. Since automatic detection at 
the operation level imposes m r e  complexity than investigations in 
the subject before [Agouris and Schenk, 19961. a hierarchical 
approach is designed to start with an initial match that isolates sen- 
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sor specifications from the generic TP detector. The objective is to 
formulate the TP detection requirements in the initial match and 
then perform multi-image matching according to the formulated 
descriptions that are independent of the object domain. Section 
two illustrates how initial match works. Section three describes the 
generic TP detector. The experiments are given in section four. 
The conclusion is provided in section five. 

2. INITIAL MATCH 

Initial match serves as the engine to control the distribution of TP 
detection and the inputs to the subsequent generic TP detector. It is 
entirely context driven, depending on the number and format of 
the input image, and the triangulation requirements. In practice, 
initial match creates TP detection candidates (TPC), on which TPs 
are detected by the generic TP detector. A TPC contains the fol- 
lowing components: (a) the TPC location where TPs are desired; 
(b) multiple local image patches that contain overlap image; and 
(c) a set of constraints with respect to the TPC. 

2.1. TPC Locations 
A TPC location is a local region where one or a cluster of TPs to 
be detected. For MISR, TP detection needs to be sufficient to fulfill 
their task in the SBA, and yet efficient to balance for the computa- 
tion expense. Without full knowledge on navigation performance 
pre-launch, TPC selection was designed on configurable grid 
evenly distributed along the orbit. In fact, TPC grid are defined on 
the standard Terra ground paths, where surface elevations and 
types (land or water) are provided by the MISR ancillary geo- 
graphical product (AGP) [Lewicki & Zong, 19991. In practice, 
special TPC locations within a grid cell are selected first, these are 
regions with rich surface features, either coastlines or hilly ter- 
rains, according to AGP. Figure 1 illustrates a segment of MISR 
ground path, where thick lines are the swath sides, dashed lines are 

Figure I : Tie-point candidate locations. 

TP distribution grid, and little boxes are TPC locations with 
shaded boxes denoting to special TPC locations. Once a TPC is 
selected. local image patches and constraints are prepared for the 
generic TP detector to detect TPs. If enough TPs are detected in a 
grid, initial match will move on to the next grid. Otherwise, it will 
continue to select TPC within the current grid until either success 
or exhaustively failed. 

2.2. Local Image Patches 
Once a TPC location is defined, local image patches are extracted 
according to the initial relationship between image and surface. 
This is an easy task as most modem remote sensors are equipped 
with either satellite ephemeris or global positioning system along 
with inertial navigation systems (GPS/INS), which provides suffi- 
cient approximation for the initial match. In the case of MISR, an 

image point intersection algorithm that employs collinary equa- 
tion, as described in [Jovanovic, 19983, is used to project from the 
center of a TPC up to image space for all cameras. Local image 
centered around the intersections are extracted. Due to uncertain- 
ties in the navigation data and surface relief, local image patches 
must be large enough to ensure adequate overlap. For example, the 
dynamic error in the navigation data during a time interval for all 
MISR cameras to see the same ground feature could cause up to 10 
pixel miss-coregistration from a pre-launch estimate. If generic TP 
detector requires 30 pixels multi-image overlap, local image 
patches must be over 50 pixels in one-dimension. 

23. TPC constraints 
Given a set of local image patches, generic TP detection requires 
certain a prior knowledge to guide the detection. These constraints 
are grouped into two sets. The first set contains general informa- 
tion about the matching: (a) the number of matching patches, (b) 
minimum number of matched image patch per TP, and (c) the 
number of desired or cluster of TPs per image patch. In the case of 
MISR, there are total nine image patches to cover all nine cameras. 
A TP must be precisely matched on a minimum of five cameras in 
order to provide sufficient bundle constraint. At both sides of the 
orbital swath (cross-track direction), a cluster of two TPs per TPC 
were considered for more reliabe attitude correction, whereas in 
the middle of the swath, one TP per TPC would be sufficient. 

The second set of constraints regard to the intra-relation among 
image patches, required by the relational-based feature matcher. 
These include the pairing among the multi-image patches (generic 
TP detector starts with pair-wise matching), and additional con- 
straints: (a) the scale factors of the imagery, (b) the accuracy of ini- 
tial match, (c) the approximate surface relief, and (d) the camera 
pointing. These parameters need not to be accurate and can easily 
be derived from the general knowledge regard the sensor and the 
surface. Both sets of constraints are put together in an object called 
TP detection constraints and passed into generic TP detector. 

3. GENERIC TP DETECTOR 

Generic TP detector operates on multiple local image patches, 
governed by the TP detection constraints. First, interest points are 
extracted independently on every local image patch. Next, interest 
points are matched on pairs of local image patches and merged as 
potential TPs connecting all image patches. The TPs matched on 
the feature-base are then modified by area-based matchers and 
refined to sub-pixel locations. The process hierarchically employs 
the merits of feature-based and area-based matching, with the 
former providing efficient and reliable ties across the multiple 
imagery and the later enhancing the accuracy of the TPs. 

3.1. Feature Detection 
For multi-image matching, the interest operator needs to detect 
distinct point features that are invariant with respect to diverse 
geometric and radiometric distortions across the multiple image, 
regardless surface type. 

After experiments with several operators, a variation of Forstner 
interest operator [Forstner, 19871 was used. In summary, Forstner 
interest operator detects meaningful point features such as comers 



or local gravity center of image gray level. The original Forstner 
operator is computational expansive and requires an empirical 
threshold upon image conditions. We determined that Forstner 
operator should only be applied locally for detecting features that 
are distinct to local environment. Such detections are likely to be 
invariant relative to local image context even with large geometric 
and radiometric distortions. Selection of a 64 x 64 pixels square 
provides an adequate local region for interest point detection, 
which sets the dimension of the multiple local image patches for 
the generic TP detector. In addition to local application, a basic 
interest points are first selected at pixels with Robert gradients 
Vg(i, j )  > wmean, where wmean is the mean magnitude of the 
Robert gradient over the local image patch. Forstner interest oper- 
ator is then applied to basic interest points. This hierarchical 
approach not only reduces the computation significantly, but also 
improves the quality of detection with a simple weight threshold 
of one. Last, the window size for the suppression of local non- 
maximum interest values is set dynamically according to the num- 
ber of the basic interest points as well as the diverse range of Forst- 
ner interest values within the local image patch. This dynamically 
controls the invariance of interest point detection, with respect to 
various global surface types that MISR covers, and various image 
qualities across MISR cameras. 

3.2. Feature Match 
A relational-based matching algorithm was designed that trans- 
lates the problem of mapping of one set of features with another 
into a consistent labeling process. 

3.2.1. Consistent Labeling Problem 
According to [Haralick and Shapiro, 19931, an N-ary consistent- 
labeling problem (CPL) is a 4 tuple CPL = (U, L, T R). Compo- 
nent U is a set of M units U = [ I, .... M), which are the objects to be 
labeled. Component L is the set of possible labels. Component Tis 
the unit-constraint relations over the unit set U. R is the unit-label 
constraints over the set U x L of unit-label pairs. A labeling of a 
subset 0 = {ul, u2' .... uN} of U is a mapping f: t!l+ L from t!l 
to L. A labelingfof a subset of units is consistent if whenever 
u uT . . ., u N  are in U and the N-tuple ( u l ,  u2' ..., uN ) is in T, 
then [ ( ~ ~ , f ( u ~ ) ) ,  (u2.f(u2)) ,  ... . ..., (uN,IN)l in R.  

Now let A and B be two sets. Let T G AN be an N-ary relation 
over set A. Letf: A -+ B be a function that maps elements of set A 
into set E.  The composition of T withfis defined by: 

T o &  { ( b l ,  ..., bN)E  BI thereexists 
(1) (al ,  ..., aN)  E A with f ( a i )  = bi, i = 1, ..., N} 

N Let S B be a second N-ary relation. A relational homomor- 
phism from T to S is a mappingf: A + B that satisfies T 0 fc S . 
A relational homomorphism maps the elements of A to a subset of 
the elements of B having all the same interrelationships that the 
original elements of A had. The relational homomorphism prob- 
lem fits the consistent-labeling model well. If we regard one data 
set A, such as a list of image features, as a unit set and another data 
set B, such as another list of features from a conjugate image 
patch, as the label set, the unit-constraint relation is simply the 

relation T of the relational homomorphism problem with unit-label 
relation given by: R= { [ ( u , ,  I I ) .  (uz, I * ) ,  ..., (uW /,)]I 
( u , ,  u2' ..., u N )  E T and ( I I ,  12, ..., I N )  E S }  . 
3.2.2. Tree Scorch 
To solve for a consistent labeling problem, we look for the set of 
all consistent labelingf: U -+ L that satisfy the constraints speci- 
fied by T and R. In the context of feature matching, there are M 
features from one image patch, N features from a conjugate patch, 
and M 5 N . Choosing M set of features as the unit set, and N set 
of features as the label set, the labeling of the unit set to the label 
set constructs a problem space which can be represented by a tree 
with a depth of M. Each node in the tree represents one labeling or 
pairing of a unit to a label. Each branch from the root to the leaf 

represents one of total n (N - j )  possible branches, only 

one of them is a consistent labeling representing the correct match. 

M M-1 

i = O j = O  

The key of feature matching is to search for the consistent label- 
ling and reject the inconsistent labelling efficiently. Due to image 
distortations, it is unlikely for features extracted from different 
images to have the same attributes and relations. Therefore feature 
matching may contain ambiguous solutions. For example, a unit 
set of 10 features is matching with a label set of 12 features. Tree 
search finds no branch with consistent labelling but two branches 
are partial consistent, one with three consistent labeled nodes and 
the other with eight. Obviously the branch that contains the maxi- 
mum number of potential matches leads to the correct match. 

In the discipline of artificial intelligence, one of the basic heuristic 
methods for pruning trees is to expand on a node according to its 
benefit function, defined as: 

where g ( n )  is the benefit from the root of the tree to the current 
node and h(n) is the estimated benefit from the current node to 
the final leaf. For image matching, g ( n )  is defined to be the num- 
ber of consistent labelling from the root to the current node, and 
h(n) is the number of potential consistent labelling from the cur- 
rent node to the leaf if the current node is expanded. In this pro- 
cess, the future benefit is estimated according to a future-emr- 
table (FTAB). Each element in the R A B  represents the error a 
pairing that deviates from the labeling constraints specified by T 
and R. When this error is large enough, a labeling is considered to 
be impossible. When the total number of consistent labelling from 
both past and future is too small, we stop expand along the current 
branch and backtrack for another node to expand. 

3.2.3. Consistent Labeling Algorithm 
The algorithm for solving the consistent labeling problem is based 
on the forward checking tree search by Haralick and Shapiro 
[ 19931, modified for expanding along a potential branch according 
to its total benefit. 

Consistent-labeling( U-list, U p t c h ,  L-list, Lgatch, T R A E ,  R )  



Select the first unit in the U list 
Return success i f  no more unit is le# in the U list 
For each potential label according to FTAB 

unit in the U list 
Add current (u, 1) to R and return success i f  this is the last 

Call forward-check to update FTAB wxt. current labeling 
Iftotal match from current to future larger than a threshold 

Call Consistent-label to search along the branch 
Add current (u, 1) to R if search along branch is success 

End If 
End For 
Iftotal tnatchhm current to future larger than a threshold 

Call Consistent-label to search along branch 
Add (u, no-label) to R if search along the branch is success 

End If 
Return fail (no more expansion for this unit and down, backtrack) 

3.2.4. FTAB for Feature Matching 
For consistent labeling of M units matching with N labels, FTAB is 
a M x N array with each element represents the error of labeling 
unit u with label 1. For interest point matching, the size of image 
search window is used to initialize mAB as a binary map to prune 
non-potential labels for all units. In the case of MISR, local image 
patches are defined according to image navigation and the average 
elevation of the local surface. The static and dynamic errors in the 
navigation data propagate to an uncertainty of [ lOfAl,  sof4"] in 
the local image extraction. MER cameras also contain a diverse 
range of pointing in the along-track direction 
(O.O", f26.1", f45.6, f60.0, f70.5" ), which creates image dis- 
parities for surface features that are off the local average elevation. 
Combining both factors, a search window is determined for each 
pair of local image patches and used to define candidate labels of 
all unit features. 

Next, the error value of each candidate pair in the initial FTAB is 
replaced with the unary constraints. First, the local distinctness of 
an interest point is represented by its interest value w. Conjugate 
interest points surrounded by similar image pattems tend to have 
similar interest values for locally detected interest points. The first 
unary constraint for matching is defined as the relative difference 
of the interest values: 

The next unary constraint is the radiometric similarity of local 
images, defined by a cheap area-based similarity measurement: 

where w defines a 5 x 5 similarity window centere&t the interest 
point. img(r, c )  is the image value at pixel (I; c), img is the mean 
image value within the similarity window, and al is the sigma of 
image values within the label similarity window. The total unary 

constraint is the summary of the distinctness similarity and radio- 
metric similarity, normalized by a factor of two. 

Before a tree search starts, the unit list is ordered such that units 
with less labeling candidates are listed first to prune out a portion 
of unnecessary search tree. During a tree search, FI'AB is updated 
according to a topological binary relationship between interest 
points. Topological relationship is used because local rotational 
distortion is relatively small for small scale imagery. For each pair 
of interest points, the topological binary distances are 
D x . ,  = s . 1 x i,-xJ{ and D y  = sy. (yi - y , j ,  where i and j are 
intefest point indices, x and $&e interest point coordinates, sx and 

are pixel resolution of the image. The topological binary con- 
s ants are: $6 . 

where (D,nax) and (Dmax)  are relaxed pixels for this con- 
straint. For smajl scale imaged they are about two to three pixels. 

3.2.5. Tie Point Merge: 
The relational-based feature matching results in a list of matched 
interest points for each image pair. Combining all match lists 
together is simply a sorting process. For example, in the case of 
MISR, local image patches from nine cameras are paired by either 
adjacent or every other adjacent cameras to provide closer geomet- 
ric and radiometric similarity. This results in total 15 image pairs: 
DfCf, CfBf, BfAf, AfAn, AnAa, AaBa, BaCa, CaDa DfBf, CfAf, 
BfAn, AfAa, AnBa, AaCa, BaDa. Assume interest point pair (0,4) 
is on the match list of image pair DfCf, (0, 2) is a point pair on the 
list of image p& DfBf, a new TP with (tp-id = 0, Of = 0, Cf = 4, 
Bf = 2)  is created. TP merge also provides a reliability assurance. 
If (4, 1 )  is also a point pair on the match list of camera pair CfBf. 
The insertion of this pair would result in an inconsistency in the 
TP table. therefore any match related to TP tp-id = 0 is discharged 
as a blunder. The algorithm used to sort the pair-wise matched 
interest points and create TPs across multiple image patches is the 
determination of equivalent class from Numerical Recipes in C by 
Press. et. al [1992]. 

3.3. Precise Match 
The accuracy of relational-based feature matching is about two 
pixels due to both image distortions and the relaxed geometric 
constraints. Area-based matchers then refine the accuracy to sub- 
pixels. A refined TP must be precisely matched on a minimum 
number of local image patches. MISR triangulation requires a TP 
be precisely matched on a minimum offive cameras with 0.2 pix- 
els accuracy, while the rest of cameras could be relaxed. If a mini- 
mum number of TPs are precisely matched according to the 
cluster requirement from triangulation. precise match will stop to 
refine the rest of feature-matched TPs. 

The main criteria for precise matching is high precision and reli- 
ability. First, cross-correlations are computed for each TP. The 
template window for a TP is centered at the interest point with the 



highest interest value. To ensure reliability, the maximum correla- 
tion location may not be more than two pixels away from the ini- 
tial feature on the search image. In addition, the correlation values 
of the eight direct neighborhood pixels around the maximum 
should also be locally large indicating the center pixel is on the hill 
of a correlation surface. The 3 x 3 local correlation hill is repre- 
sented by a quadratic two-dimensional polynomial with the maxi- 
mum of the polynomial as the final solution of the correlation. The 
(T for correlation is better than half a pixel. To further improve, 
least-square matcher (LSM) [Gruen and Baltsavias, 19871 is fol- 
lowed. The same template camera is used. LSM sequentially 
matches the template with every conjugate image patch instead of 
simultaneously applied to multiple image. This way, the matcher is 
separated from the engine that controls the matching legislation. 
The correction of LSM is only allowed within one pixel for high 
reliability. The (T for LSM is less than two tenth of a pixel. 
Though this combination of correlation and LSM algorithms cre- 
ates an expensive area-based matcher, it still has a high perfor- 
mance due to the quality of the input TPs and the small search 
windows. 
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4. EXPERIMENTS 

. 4.1. Pre-launch Tats 
In prelaunch development, an orbit of simulated MISR imagery 
that runs through the north America continent was created, based 
on similar bands of Landsat Thematic Mapper (TM) imagery 
along with a registered DEM. The simulation process is described 
in [Lewicki et. al., 19941. The TP detection algorithm was imple- 
mented and tested with the simulated image. The results were 
applied to SBA for evaluations against various orbit error models. 

Due to the dynamic errors in the simulated orbit, SBA requires 20 
well distributed TPs per 5 12 image lines. SBA also shows cluster 
of TPs at both sides of the swath are not necessary. TP detection 
was configured accordingly. Figure 2 illustrates the number of 
detected TPs per SOM block along the swath. A MISR ground 
path on SOM projection is reported on 180 blocks from north to 
south. Each SOM block is 140.8km long in the along-track direc- 
tion and contains 512 lines of projected image. The land coverage 
of the simulated MISR imagery is from block 51 to 77. Note the 
TPs in the start and end blocks are less since they are partial 
blocks. The overall TPs could be increased if configured to. On 
average, there is over one TP detected per TPC per MISR camera 
regardless surface type, with performance slightly better on hilly 
terrain. The detection is slightly weaken on the most oblique D 
cameras, covering only 80% of the grids set by initial match. 

Generic TP detector was intensively tested with the simulated 
MISR imagery that cover different surface types and are resam- 
pled from LandSat imagery of different times. It worked effec- 
tively and consistently if initial match would supply local image 
patches with over 30 pixels overlap in both dimensions. Though 
most parameters are configurable, the system performed well with 
the defaults in all tests. On average, there are 15-20 interest points 
detected on a local image patch, and among them 10-15 interest 
points are matched in feature base consistently (MISR D cameras 
are likely on the lower end). The experiments also show that the 
detection of invariant interest points over multi-image are critical 

and the relational-based matcher is very reliable. 

The accuracy of the matching was assessed in three ways. First, 
TP symbols were superimposed on imagery and visually examined 
by zooming into the pixel level for measurements. Second, “truth” 
TPs were simulated for all detected TPs, by projecting from one 
precisely matched camera down to the surface DEM, then back- 
ward up to the rest of cameras. The projection used the simulated 
navigation data with no added errors, in contrast with the “mea- 
sured” navigation data used in TP detection and SBA. The mean 
differences between the detected and simulated TPs are within 0.2 
pixels for LSM points, 0.4 pixels for correlation points, and about 
2 pixels for feature TPs, all with a small sigma. Finally, SBA 
would evaluate the residuals of the TPs after trigulation and com- 
pare with the errors added in the orbit model. The results verified 
the uncertainties of various types of matching and the sufficency of 
TP detection with respect to the need of triangulation. 
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Figure 2. Number of detected TPs per SOM block. 

4.2. Post-launch Operation 
TP detection was tested with MISR data after Terra launched in 
late 1999. With little change, it was set into production at an aver- 
age rate of processing one day-side orbit per 45 minutes and run 
automatically upon data coming. Figure 3 is an example of TP 
detection on MISR orbit 2578 over south Greece for camera Df 
and Aa, where the red symbols are TPs matched with LSM, the 
yellow ones are matched with correlation, and the green ones are 
feature matched. Note that image Df has less match as the camera 
looks through a long path in the atmosphere and image becomes 
fuzzy. Quality assessment statistics, such as the plot shown in Fig- 
ure 2 as well as other SBA feed backs, are created automatically 
for each orbit production. The overall production ended within a 
few months and successfully covered all Terra paths. Though there 
are a few paths with very few TP detections, the investigation 
showed they all due to the imagery is too cloudy according to the 
MISR cloud detection standard. 

4.3. Adoption to AirMISR 
The pushbroom AirMISR flies on 20km above the surface. Com- 
paring with MISR, both its position and orientation are unstable, 
causing large image distortions. Generic TP detector is applied to 
imagery resampled on the ground using initial navigation. When 
initial navigation provides near 30 pixels overlaps, generic TP 
detector works fine as to MISR, regardless the much worst image 
distortions. When image pointing is worse, initial match would 



Figure 3. TP detection on orbit 2578 for camera Df and Aa. 

impose match in pyramid or an operator would need to measure 
one TP on all images to supply a correction to initial match. 

5. CONCLUSION 

A multi-image TP detection algorithm was designed and success- 
fully applied to the triangulation of MlSR imagery globally. The 
hierarchical approach leads the detection to a maximum coverage 
across all images and all surface lands. Generic TP detector is flex- 
ible in application, very reliable benefit from the relational-based 
matcher, and accurate with the enhancement from the area-based 
matcher. The system could be potentially applied to or adapted to 
different types of multi-image matching. 
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